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ABSTRACT

The optimum gain of uniformly spaced arrays of isotropic sources
or dipoles is investigated theoretically in this paper. The formulation
is processed with the aid of an array matrix. The optimum gain and the
corresponding excitation are expressed directly in terms of the elements
of the array matrix.
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ON THE OPTIMUM GAIN OF UNIFORMLY SPACED
ARRAYS OF ISOTROPIC SOURCES OR DIPOLES

INTRODUCTION

For a uniformly spaced array consisting of a given number of
isotropic sources, the renowned synthesis of Dolph,' including the ex-
tension by Riblet, 2 offers the minimum beamwidth for a prescribed
side-lobe level. It is not an optimum design from the point of view of
maximizing the directivity or the gain. Ma and Cheng3 have recently
presented another synthesis which optimizes the gain under the con-
dition of a prescribed side-lobe level. Because of the polynomial formu-
lation, neither of these two methods can conveniently be applied to arrays
of directive sources, such as those consisting of dipoles. The problem
that deals solely with the maximum or the optimum gain of uniformly
spaced arrays was first investigated by Uzkov 4 in a very elegent formu-
lation. By means of an orthogonal transformation in vector space, he
obtained some important results concerning the optimum gain of an
array of isotropic sources. In particular, he showed that the optimum
gain of an end-fire array of isotropic sources as the separation approaches
zero is numerically equal to N , where N denotes the number of sources.
He also showed that when the separation is equal to X /2, the optimum
gain is numerically equal to N. Although he indicated that the method
can be applied to arrays of directive sources, he did not elaborate. The
excitation of the arrays to produce the optimum gain was not discussed
in his work. Several years later, Block, Medhurst and Pool 5 proposed
an optimization method based upon the impedance matrix defined for the
elements of an array. Only a very limited calculation was reported in
their work. Recently, Stearn6 made some extensive calculations on the
gain of an end-fire array of half-wave dipoles, and its corresponding
excitation for various separations based upon their method.

In this work, we shall formulate the problem with the aid of an
array matrix. The method, in certain respects, is equivalent to the
impedance method except that all the essential results, namely, the
gain and the corresponding excitations, can be expressed directly in
terms of the elements of an array matrix. The formulation is particularly
effective in dealing with arrays of short dipoles as well as isotropic
sources. In the present report, we shall consider only broadside arrays,
and ordinary end-fire arrays. The latter are characterized by a restraint
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that the progressive phase shift between adjacent elements is assumed
to be equal to the electrical distance between them. This type of end-fire
array does not yield the optimum gain, because of the restraint on the
phase shift. We treat these arrays here because the formulation is very
much like that for broadside arrays. In a subsequent report, a general
treatment of end-fire arrays will be given without imposing the above-
mentioned restraint on the progressive phase shift.

FORMULATION

As an illustration of the method, the simplest case of a broadside
array consisting of Zn isotropic sources as shown in Fig. l(a) will be
treated here. The field pattern of such an array is given by

(1) F(0) = Ai cost~ D cos e
i=l

where

D = Zrd/k

d = separation between adjacent elements

0 = angle of inclination measured from the axis
of the array

Ai = amplitude of the i-th pair of elements

Zn = N = number of elements.

The amplitude Ai is assumed to be real, but it may be either positive
or negative. The corresponding power pattern can then be written in
the form

(2) 5(O) =[F(e) 2  n n, AiAj cos[(i - cos

i=l j=l

cos[(j - OD cos el
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The directivity or the gain of the array, designed to be broadside, is
determined by

s(2) S~j
(3) gN W

4 S(e)) d]Q S(O) sine: de

(A i)2

=1

n n

i=i j=i

where

(4) Tri = cos(i - D cos cos[(- D)cos jsin 0 dG

= I [si_j(D) + si+j (D)

The Sr(D) function appearing in (4) is defined by

sr(D) = sin rD r 0;
rD ' rO

(5) and

So(D)= , r= 0.

To optimize the gain, we set

(6) a8gN

8Ap
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which yields the following set of equations:

(7n n n

i=l j=l i=l j=l

p = 1, 2, .. n;

or

n n n /

j=l i=l j=l i=l

p = 1, 2, "'" n.

Since the quantity on the right side of (8) is independent of p, we may
denote it by K, and (8) can be written, in the matrix form,

(9) [P] {A} = fK} .

The elements of the square matrix [P], which is symmetric, are given
by (4). For convenience, [P] will be designated as the array matrix.
Denoting the adjoint of [1P] by [B], one has

(10) {A} = [P]" ' {K} = 1j "j [B] (K}

where 1P denotes the determinant of the array matrix. From (10),
we conclude that for optimum gain, the amplitude distribution must
satisfy the following relations:

n n n

(11) A, :A2: ... An= 7Bj: ' Bzj:" _ Bnj.

j=1 j=l j=l

1522-1 4



In view of (8), Eq. (3) may be written as:n n
(12) G N  Ai pjAj; p = 1, or Z, ... or n

i=l l

where the capital letter GN signifies the optimum value of gN. By
making use of (11), and a multiplication rule in determinant theory,
(1 2) can be converted into the following expression:

n n

(13) GN =1 7 Bij/ I P
i=l j=l

Equations (11) and (13) constitute the principal result of this formulation.
The simplicity of these formulae is manifest since only the elements of
the array matrix are contained in tnese expressions. For the case of a
broadside array with an odd number of elements equal to 2n-l, Fig. l(b),
Eqs. (11) and (13), are still valid, except that the elements of the
array matrix are changed to

(14) ij = 
-I (si-j + si+j-z) , for N = 2n - 1.

The method described here can be applied equally well to end-fire arrays,
or arrays of directive sources. In the following section we list the ex-
pression for the power pattern and the corresponding array matrix for
several types of arrays composed of isotropic sources or of short dipoles.
It is assumed that the individual short dipoles have a figure-eight pattern
described by sin Od, where ed denotes the polar angle measured from
the axis of the dipole. For completeness, the cases discussed previously
are also included.

1522-1 5



POWER PATTERN AND THE CORRESPONDING ARRAY

MATRIX FOR VARIOUS TYPES OF ARRAYS

(1) Broadside array of isotropic sources (Fig. 1)

a) N = Zn
n

Se(8= Ai cos ( D cos 0
i=1

Pij [si_j(D) + si+j-I(D)]2

where

so(D) =1, Sr(D) = sin rD, D =.Tr d.
rD

b) N = Zn-I

So(( )  [ Ai cos(i-l)D cos j

Pij -2 [si_j(D) + si+j_zlD).

de

An A2  Al Al A2  An

(a)

d9

An A2  2A I  A2  An

(b)
Fig. I. Broadside arrays of isotropic sources (a) N = 2n, (b) N = Zn-I.

The designation for the elements of an array with odd number
of elements also applies to other types of arrays sketched in
the subsequent figures.
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In the following tabulation, the functions Se() and So(9) have the same

meaning as those defined for broadside arrays of isotropic sources.

(II) Broadside array of parallel dipoles (Fig. 2)

a) N = Zn

S(0,0) = (1 - sin? a cos 2 41) Se(()
1

Pij = 1 [Pi-j(D) + Pi+j.l(D)]

where

Po(D) = r( 1 sin rD+ cos rD
3o , Pr75) = 1 - rD rT-D- -

b) N = Zn -I

S(O,4) (1 - sin z 0 cos2 c$) SO()

Pij = - [pij(D) + Pi+j-z(D)].

d

Y

Fig. 2. A broadside array of parallel dipoles.

The angles 9 and appearing in the

text correspond to the ones shown in
this figure.
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(III) Broadside array of collinear dipoles (Fig. 3)

a) N = Zn

S(O) = sin2 0 Se()

Pij = li-j(D) + li+j-l(D)

where

S(D) r(D) sin rD cos rD

3 = r(, r 3 D3  r 2 D2

b) N = Zn- 1

S(O) = sin2 2 So(0)

Pij = li-j(D) + li+j-z(D).

d

An  A2  A, A, A2  An

Fig. 3. A broadside array of collinear dipoles.

(IV) Broadside array of crossed dipoles (Fig. 4)

In this case the two crossed dipoles are assumed to be of equal
amplitude but excited 900 out of phase. The field due to a single unit in
the broadside direction (8 = /2,' = T/2) is therefore circularly polari-
zed.

a) N = 2n

S(9,4) 1 (1 + sin? c sin' 6) Se(8)

I [C i j(D) + Ci+jI(D)]1ij -- 4 -

1522-1 8



where

0°(D) = 4 Cr(D)=( 1 + l-- sin rD cos rD
3 r 2 D'J rD

b) N =Zn- 1

S(, 1 (1 + sin? 0 sin? ())SoO)

Pij = I [cij(D) + Ci+j_2 (D)].

4x

d

An A2  A, Al A2  An

Fig. 4. A broadside array of crossed dipoles;
the excitation of the first pair is:
Alx = A1 andAz = jA1 , etc. The

angles 0 and are shown in Fig. 2.

(V) End-fire array of isotropic sources (Fig. 5)

As explained in the introduction, the end-fire arrays considered
here are of the ordinary type, with a progressive phase shift between
adjacent elements numerically equal to D.

a) N = Zn {n
So(e) Ai cos-(i D(l - Cos 0)

lil

Pij [sZ(i_j)(D) + sZ(i+jl)(D)]

where the sr(D) function is the same as that defined in Case (1). We
may remark that s2r(D) can be decomposed as follows:

1522-1 9



s 2 r(D) = cos rD sin rD - cos rD sr(D).
rD

b) N = 2n-i

So = A i cos[(i-l)D(1-cos 0)]

i=l

I [ s (D) + (D)]Pij = ZG ~ij) s(i+j - )(

d6

3D D .D .3D .2n-I

AneJ2 A2eJT A2ej2 Ale- AzeJT Ane

Fig. 5. An end-fire array of isotropic
sources, D = ZTr(d/X ).

(VI) End-fire array of parallel dipole (Fig. 6)

a) N = Zn

S(O, 4) = (1 - sin? 6 cos z 4)) Se'(()

_ij I [qi1 j(D) + qi+j_l(D)]ij 2

where Se1(8) is the same as that defined in Case (V-a) and

q(D) cos rD - sin r + cos
(I-rz D z  rD r z D2

cos rD Pr(D).

1522-1 10



The function pr(D) appears in Case (II).

b) N -Zn-1

S(G,4) = (1 - sin? 0 cos 2 4) So 0 e)

: 1 [qi (D) + qi+j (D)]

where Sole) is defined in Case (V-b).

d

AneJ20' 3D .D A e2D_
2n-I 3 D D
Ane ~~A2e 2 Ae 2 Aie J A26e n

Fig. 6. An end-fire array of parallel dipoles;
the angles 0 and 4 are shown in Fig. 2.

(VII) End-fire array of crossed dipoles (Fig. 7)

The crossed dipoles are assumed to be of equal amplitude but

excited 900 out of phase.

a) N = Zn

S(O) =1 ( + cos E) S
2 e) ())

Pij = [qij + qi+j-1]

Although the pattern for this case is different from that of an end-fire

array of parallel dipoles, the array matrix, and hence the optimum
gain, is the same for both cases.

1522-1 11



b) N = 2n-i

S(O) = -(1 + cos 2 0) SOW8)
2

2. =1 [qi-j + ]

2n- I 3D .D .3D 2n-I
Ane D Ae A' ,"  e Ale '  A 2eJ -  Anel T D

Fig. 7. An end-fire array of crossed dipoles; the excitation
of the first unit althe right is:

Aix = Ae , Aly = jAje , etc.

The angle 0 and t are shown in Fig. 2.

NUMERICAL COMPUTATION

The numerical computations for the amplitude distribution and the
optimum gain based upon (11) and (13) seem to be straightforward.
This is indeed the case if the order of the array matrix is equal to two,
or if D, the separation between the elements, is not too small. When
n is greater than two, and D is less than Tr for the broadside arrays or
less than Tr/2 for the ordinary end-fire arrays, the computation becomes
rather difficult even with the aid of an IBM-7090 computer. The fact
that such a giant machine could not evaluate accurately a 3 x 3 determi-
nant or invert the associated matrix without going into multiple precision
programming is truly unexpected. It should be mentioned that D = Tr

for the broadside cases, and D = Tr/2 for the ordinary end-fire cases,
correspond to the demarcations of the Dolph synthesis and the Riblet's
extension. For convenience, we shall call the region of D lying below
these two values the "super-gain" region. Pending a more accurate
evaluation, we shall present here only the data of GN for the values of
D where the accuracy was certain. These results are plotted in
Fig. 8-13. In regard to the corresponding amplitude distributions, the

1522-1 12



data are too numerous. Figures 14-19 give a few sample curves for some
typical distributions. In the case of broadside arrays of isotropic sources,
as discussed in the following section, it is possible to find the limiting
values of GN as d - 0. The dotted lines of the GN curves in the super-gain
region correspond to the interpolated values between these limiting values
and the accurately computed values. For other cases, where these
limiting values have not yet been found, only the accurately computed
values are plotted. Each set of curves contain also a plot of Gmax/Gc
and GminiGoo where Gmax and Gmin denote, respectively, the first maxi-
mum and the first minimum of the GN curves. Go denotes the asymptotic
value of GN as d -oo. Numerically, G. is equal to N for arrays of iso-
tropic sources, and is equal to 3/Z N for arrays of dipoles. In the case
of broadside arrays of isotropic sources, we also plotted a curve,
Fig. 8(e), labelled Go/G. where Go denotes the limiting value of GN as
d - 0. A discussion on the values of Go is given in the next section.

THE LIMITING VALUE OF GN FOR BROADSIDE
ARRAYS OF ISOTROPIC SOURCES

For N = 3 or 4, it is relatively simple to evaluate the limiting value
of GN as D approaches zero. This can be done by expanding the relevant
function sn(D) in a series of D2 and retaining the leading terms of

I P and ZBij.

The result gives

f 2

(15) lim G 3 = lim G4  = 2.25.
D- 0 D-*0

When N = 5 or 6, the same procedure calls for seven terms in the series
expansion of sn(D) which already involves a very tedious algebraic
manipulation. The result yields

(16) lim G5 =lim G 6  5 3.515625
D-0 D-0 24/

To obtain this simple result we must deal with many clumsy numbers
such as (6)14/15! . It should be mentioned here that these calculations
were performed before we had access to Uzkov's article. In view
of the orderly figures contained in (15) and (16), we then proposed a
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conjecture that for arrays with odd number of elements N or those with

even number of elements N + 1 the limiting value must be given by

(17) lir G N  5 4 7 ... N

D-04 6 N-

After reading Uzkov's paper, we realized that as far as these limiting
values are concerned they can most conveniently be obtained from his
method. Although Uzkov gave these values only for end-fire arrays, it
can be shown by means of the orthogonal transformation which he out-
lined that, in general,

N-1
2

(18) lim GN(Oo) = (2n+l) Pn (cos 00)
D -0 n=

where Pn(cos 0 o) denotes the Legendre polynomial of order n, and 00
denotes the angle, measured with respect to the axis of the array, in
which direction the array was designed for the optimum gain. The values
of

lim Gn(6o)
D-0

are plotted, on db scale, in Fig. 20(a) and (b). For end-fire arrays,
without the phase restraint mentioned previously in the introduction,
one has

N-1

(19) lim GN(0) = (2n+l) = N 2

D- 0
n= 0

This formula was originally enunciated by Uzkov. For the broadside

array, (18) reduces to

N-1

(20) lim GN = (2n+l) Pn(1).
D-0

n=0

1522-1 14



I
I

The same formula applies to the ordinary end-fire arrays as D - 0.

It can be shown that the sum given by (20) is indeed identical to the one
given in product form by (17). Looking back at the hard work which we
did in arriving at (17), one has to admire Uzkov's ingenious method of

successive orthogonal transformations in providing the answer for these
limiting values of GN. The only consolation for our innocent hard work
is that without it, the alternative expression for (20) as given by (17)
probably would not be recognized at first glance. In regard to the
numerical values of the limiting values of GN.(1r/2) as given by (17) or
(20), it is of some interest to point out that these can be approximated
quite accurately by an even simpler formula. From the Peirce-Foster
Table, 7 one finds that

2

(21) 4n > 3 5 n- > 2(2n-l)
T ( 2 4 2n-2J Tr

hence the mean value of 4n/Tr and (4n-2/ITr) may be used an an approxi-
mate value of GN(Tr/2), i.e.,

(22) 2(2n--) _ 2N+l
(22)N T T

The expression given in (22) is certainly the asymptotic value of
GN(7r /2) for large values of N. The fact that it may be used for all
values of N in approximating (17) is clear from the following table:

TABLE OF( - ... - AND ZN+I
Z 4 _1Tr

( 3 5 N 2N+I
2 4 21N-I iT

3 2.250 2.228
5 3.515 3.501
7 4.785 4.775
9 6.056 6.048

11 7.328 7.321
13 8.600 8.594

15 9.873 9.868
17 11.14 11.14

19 12.42 12.42
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Finally, we wish to emphasize that the result found here also agrees with
the conclusion drawn by Bouwkamp and Bruijn 8 that for a continuously
distributed line source, N - o, the optimum gain is without bound. How-
ever, for discrete arrays there is a unique solution.

COMPARISON OF GN WITH THE GAIN OF A
UNIFORMLY EXCITED ARRAY

Before we conclude this report, it is important to point out that
the gain of a uniformly excited array with the same number of elements
and spacing, which will be denoted by g(), is, in general, slightly less

than the optimum gain except inth$e super-gain region. Figures 21-25
show the comparison between g." and G for some typical cases. In

vfiewy of plth e prata valcue of nfr excte varrys, es hfarae. copied
1N

data will soon be published as a separate report.
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Fig. 14. Amplitude distribution of a broadside array
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Fig. 15. Amplitude distribution of a broadside array
of eight parallel dipoles.
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Fig. 16. Amplitude distribution of a broadside array
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Fig. 20. Polar plot of 10 log[ Lim G(6 0 ).,
D-0

(a) N = even, (b) N =odd.
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